随着量子计算和机器学习在各自领域的进展,二者的结合似乎水到渠成
没有人会怀疑,量子计算和机器学习是当前最炙手可热的两个研究领域。
在量子计算方面,理论和硬件的一个个突破性进展让人们看到大规模通用量子计算机的脚步越来越近。
在机器学习方面,以人工神经网络为代表的方法在视觉、语音、自然语言理解、游戏等应用领域中有了很大的性能提升。三位深度学习领域专家获得2019年图灵奖,更是被评论为“意味着AI复兴元年的到来”。
当量子计算和机器学习相遇,会碰撞出什么火花?“总的来看,这是一个还处于早期探索,未来有很大发展空间可以期待的领域。”腾讯杰出科学家、腾讯量子实验室负责人张胜誉评价道。
两者并非“油和水”的混合
早在上世纪90年代,威奇塔州立大学的物理学教授伊丽莎白·贝尔曼就开始研究量子物理与人工智能的结合,而在当时,神经网络还堪称是特立独行的技术。大多数人认为这是在把油和水进行混合。她回忆说:“我花了很长时间才把论文出版。与神经网络相关的期刊会说,‘量子力学是什么?’,而物理期刊会说,‘神经网络是什么?’”
但随着量子计算和机器学习在各自领域的进展,二者的结合似乎水到渠成。
神经网络和其他机器学习系统已成为人工智能时代的核心技术。具备机器学习能力的人工智能在某些方面的能力远超人类,不仅在国际象棋和数据挖掘等方面表现出众,而且在人类大脑所擅长的面部识别、语言翻译等方面进展迅速。通过后台的强大算力,这些系统的价值不断凸显。
但同时,传统计算机数据处理能力接近极限,而数据却在不断增长。正因此,业界展开了激烈竞争,看谁能率先推出一款比现有计算机更强大的量子计算机,来处理日益庞大的数据。
“机器学习技术的进步有赖于计算能力的提高,量子计算机的计算能力肯定比现有机器强太多,它必然能推动机器学习的发展,这就好比,一个脑子转得很快、更聪明的人比一个反应慢的人处理问题更快更好。”中国科学技术大学中科院量子信息重点实验室研究员韩正甫告诉科技日报记者,机器学习可能会在很短的时间内处理超出当前能力的复杂问题。
北京国双科技有限公司(以下简称“国双”)首席技术官刘激扬在接受科技日报记者采访时则表示,随着产业数据规模的爆炸式增长,深度学习模型网络参数的不断扩增,现有的计算结构及框架,面对海量的数据规模及深层网络结构,处理分析所需的时间、硬件成本非常高,因此,亟须更为高效的解决方案。
强强联合的化学反应
刘激扬说,正因此,很多研究机构及科技公司都将目光集中到了量子计算领域。
“量子计算的独特性质,使得它无论是在数据处理能力还是数据存储能力上,在理论上都远超经典计算,所以若将其应用到机器学习中,不仅可以解决目前机器学习算法处理海量大数据时计算效率低等问题,甚至可能改变整个机器学习领域。”刘激扬说,机器学习和量子计算若结合,一方面是希望利用量子计算优良的数据处理能力,解决机器学习运算效率低的问题;另一方面探索使用量子力学的性质,开发更加智能的机器学习算法。
刘激扬具体分析道,机器学习与量子计算的结合,主要有以下几种形式:由于量子计算能够同时执行大量、复杂的计算过程,所以通过结合它可以使某些在传统机器学习中不可计算的问题变为可能,从而大幅降低机器学习算法的计算复杂度;利用量子理论的并行性等加速特点直接与某些机器学习算法深度结合,从而可以催生出一批全新的量子机器学习模型,这些模型能够实现更高的计算效率;还可以利用机器学习算法,解决量子物理学领域中的一些难以分析的问题,如量子多体物理问题、量子优化控制等。
“近十年涌现出大量量子技术和机器学习结合的研究,主要在用经典机器学习解释和帮助量子力学的研究,也有不少对经典机器学习设计高效量子算法的研究,还有少量其他方面,如量子启发式机器学习、用量子理论帮助理解机器学习中的现象等,大家得到了形式丰富的结果。”张胜誉告诉科技日报记者。
张胜誉与团队近日系统梳理了量子机器学习的发展,文章发表于《国家科学评论》2019年第1期出版的“量子计算”专题。
国内企业积极部署
“虽然进展喜人,但我们也应该注意到目前机器学习领域的很多结果在严格性、问题基础性和未来实用性上都还有很大的提升空间。总的来看,这是一个还处于早期探索,未来有很大发展空间可以期待的领域。”张胜誉认为。
“量子机器学习的更多应用还须等到可以实现大规模量子信息存储,以及有成熟的量子计算机出现才行。”韩正甫说,但事实上,量子计算机的概念1980年代提出,投入研发20年,迄今还没有一台真正走出实验室。
刘激扬也表示,量子计算机是真正实现量子机器学习算法实用化的重要硬件基础,要想将量子机器学习算法应用于实际的数据分析和处理任务中,需要将数据转化为量子态,上传至计算机中,进行存储、处理并导出,这就需要研制出具有成百上千超导量子比特的量子计算机,“在通用量子计算机建造成功之前,量子机器学习算法则很难在实际应用中展现出其数据处理方面的强大能力。”
张胜誉分析道,由于硬件资源的受限,量子机器学习的验证和发展确实有很多瓶颈。“理论上可以进行更多量子加速的研究,实践上也可以结合硬件不停推进对物理化学中基本问题的理解。”他认为,这个领域最终的突破,可能需要理论和硬件手拉手往前走。
在刘激扬看来,量子机器学习还缺乏完备的理论框架及实际验证。“由于量子机器学习只能在量子状态下进行,而当前由经典信息到量子信息的转换研究较少,还有很多问题未解决。”
“我们还不能从基础理论角度来阐述量子机器学习算法的优势。”刘激扬说,目前仍不能证明某个量子机器算法的性能比所有的经典机器学习算法都好,因为没有找到同样复杂度的经典算法,但这并不代表这样的经典算法不存在,所以还有待进一步研究证明。
但是,在业界大佬们看来,量子机器学习是个充满无限遐想的领域。“深度学习带来的变化已经远超十年前的估计,量子计算机对量子多体系统的模拟会给我们带来哪些颠覆性的认识,量子与机器学习结合会对我们自身和自然界的理解和改变带来哪些影响,这里有非常大的想象空间。”张胜誉说。
张胜誉介绍道,腾讯一直持续关注量子机器学习的方向。“我们团队和法国的合作者IordanisKerenidis一起设计了第一个可证明有加速的神经网络量子算法,团队在机器学习对量子物理和量子化学的理解上也在不停向前探索。我们希望能在这个令人期待的领域中作出一些踏实的贡献。”
在机器学习领域深耕多年的国双,也一直关注着量子机器学习等相关领域的最新动态。刘激扬说,目前,该公司的产业人工智能平台搭载包括机器学习、知识图谱、自然语言处理等人工智能技术与算法,在数字营销、司法大数据、工业互联网等领域都积累了丰富的实践经验及成功案例,切实的帮助客户提升生产运营效率。
“除了持续推动‘AI+行业解决方案’服务模式落地外,我们会跟进量子机器学习的进展并积极部署,思索如何将这些新兴技术融入国双独有的产业人工智能平台,致力落实用技术改变产业,为客户实现智能化转型而努力。”刘激扬说。
相关阅读
404 Not Found
精彩推荐
404 Not Found
阅读排行
404 Not Found
相关词
- 美国社交电商再起波澜:TikTok商城开张,Meta却要闭门做生|今日快看
- 世界快资讯:上海再保险“国际板”正式启动
- 特别好评RPG游戏《恐怖的世界》 完整版10月19日上线|环球精选
- 易会满:持续加大对伪私募、地方交易场所等重点领域风险的整治
- 十元店重回巅峰:新穷人与日本1990s
- 每日快报!教育股震荡走低 国新文化跌超8% 荣信文化跌逾7%
- 全球快讯:央行潘功胜:人民币债券具有良好的投资组合分散化价值
- 国产大飞机开启常态化商业运行:C919带动产业链一起飞 市场规模有望达万亿元量级
- U盘安装系统时蓝屏怎么解决 全球头条
- ROG蓝屏后该采取什么解决方法来重启 世界快报
- 中国地震局:国家地震烈度速报与预警工程已完成主体建设任务 焦点讯息
- win10启动就蓝屏是怎么回事 全球热点
- 环球头条:华硕笔记本acpi蓝屏该如何解决
- 世界最资讯丨打击违规销售作弊器材行为 海南省市场监管部门多措并举为高考中考保驾护航
- 每日热议!永劫无间蓝屏死机应该如何处理
- KMODE蓝屏出现应该如何处理 全球观热点
- 携程集团发布2023年第一季度财报
- 甘肃省华亭市东华镇市场监管所开展农村夏季食品安全专项检查_环球热资讯
- 深圳市市场监管局总部经济审批服务“全市通办”正式落地
- 解码开化(一) 文旅产业:从“高看一眼”“棋高一招”到“焕然一新”
- 第五届京津冀石墨烯大会在北京房山举办,加速三地产业链深度融合
- 高考期间海南天气如何?未来两天多云有雷阵雨 焦点速读
- 别被“蚊蝇通杀”迷了眼
- 啥是海洋?直播带你一起看 天天快看点
- 内罗毕:低碳和电动交通载具展 天天观速讯
- 环球播报:斯诺克新星赵心童为涉赌遭禁赛道歉
- 《沙石镇时光》:1.0版本发售日期公布!通过“塑造你的未来”预告片为前方的秘密和危险做好准备 世界独家
- 关注眼健康亟须全社会行动起来
- 哈利波特魔法觉醒怎么尊享眉色 尊享眉色方法攻略 环球速看
- 甘肃省华亭市市场监管局多举措保障中高考期间食品安全 环球新动态
- 第19届深圳文博会人气旺 每日快报
- 甘肃省嘉峪关市市场监管局镜铁分局全力保障高考期间食品和特种设备安全
- 河北沙河:太行古村落焕发新活力_天天快播
- 世界百事通!晋陕峡谷遇奇石
- “共建首都跨境电商新生态”系列活动在京启动 每日热门
- 环球看热讯:汉字工坊上班不带饭怎么过 找出9个公司吃的答案分享
- 甘肃省张掖市新墩市场监管所“三力齐发”加强中高考期间特种设备安全保障_环球热推荐
- 快消息!小心,这种眼疾易盯上上班族
- 眼药水怎样使用才正确
- 当前讯息:机器人:公司基本实现了35kg以下新款机器人减速器的国产化替代
- 华菱钢铁:钢材产品在新能源新材料领域需求前景将持续向好-天天通讯
- 今早发布!雷雨!_天天即时
- 全球快报:云顶之弈s9暗影岛格温阵容攻略 s9赛季暗影岛格温阵容搭配
- 江苏“智造”夯牢实体经济“家底”
- 加拿大野火烟尘飘至美国 部分地区被烟尘笼罩
- 【环球时快讯】文字玩出花无法原谅怎么过 无法原谅十二处细思极恐在哪
- 环球快播:百亿授信!民生银行与协鑫集团达成全面战略合作
- 前5月外贸保持稳定增长 制造业转型升级塑造出口新动能
- 简讯:江苏油田页岩油累产突破4万吨
- 让城市成为“开放的艺术馆”(金台随笔) 视点
- 易会满:适时出台资本市场进一步支持高水平自立自强的政策措施 全球报道
- 【全球聚看点】河南麦收进度过八成 夏播已完成近五成
- 今起,在锡启幕!
- 两大国际组织上调中国2023年经济增长预期
- 仲景食品:公司产品以国内销售为主 出口业务占比较小-每日速看
- 天天速递!U盘装系统进入PE蓝屏该采取什么解决方法
- 充满算计!日美澳在南太铺光缆,日媒炒“抗衡中国影响力” 焦点热门
- 重点聚焦!力箭一号火箭的专属发射工位长什么样?
- 袁明辉:拍摄下来记录下来用自然摄影留住那些美好
- 扫码支付已在国内迅速发展普及 刷掌支付是否还有市场前景
- “去风险”成脱钩新马甲
- 环球微资讯!360qpesv.sys导致蓝屏该采取什么解决方法
- 【新要闻】北海市海城区地角街道辖区率先完成第二季度食品安全“两个责任”包保工作
- 国家开发银行前5个月发放交通领域贷款2687亿元
- 当前视点!带火原料药企,马斯克加持的“减肥神药”又火了
- 什么是股份制企业?股份制企业和私营企业的区别有哪些?
- 怎么才能正确安装python39.dll
- 全球连线|对两国合作机遇充满期待——洪都拉斯各界热议中国驻洪使馆开馆
- 兰州新区召开第二季度落实食品安全“两个责任”推进会议
- 民泰银行绍兴分行创新产品助共富系列① | 动产融资业务,为民播下“共富”希望-世界实时
- 【世界快播报】我国外贸连续4个月保持正增长
- 偷渡罪一般判多少年?偷渡人员怎么正规回国?
- 吉利雷达以“真乘用化”撬动市场,5月销售1016台创历史新高 焦点资讯
- 故意伤害致人死亡如何处罚?故意伤害致死赔偿多少?
- “6·6”全国爱眼日公益讲座在京举办
- 上古诸神:卡牌对战官网在哪下载 最新官方下载安装地址 环球热推荐
- 天天头条:电脑中缺失alrsvc.dll文件应该怎么处理
- 赡养费标准是什么?不给赡养费最严重的后果有哪些?
- 只允许跟院方合作民营救护车辆进入?医院回应
- 涉案金额959万元!海口曝光9家定点医疗机构
- 世界快播:如何解决电脑端丢失rasmans.dll提示问题
- 微资讯!江西省新余市市场监管局:强化建材质量监管 守牢质量安全防线
- 【快播报】警惕“负首付”骗贷
- 财产税有哪些税种?所得税和财产税的区别有哪些?
- 高考第二天部分地区已公布查分时间 胜利在望,加油少年!|全球快看点
- 青海省海西州四项措施为“中高考”保驾护航_每日看点
- 嫖娼拘留多少天?初次涉黄拘留几天?
- 青海省市场监管局发布中高考期间食品安全消费提示 天天热门
- 浙江金华婺城区:天然富硒,“硒”望之旅
- mtfutils.dll缺失如何恢复
- 忘了车限号开了一天罚多少钱?郑州限行免罚有几次机会?
- 焦点快播:网红化妆大师官网在哪下载 最新官方下载安装地址
- 动态:量子密钥分发攻防研究获重要进展
- 什么是违法所得?违法所得和非法财物的区别有哪些?
- 仙迹之九州神剑官网在哪下载 最新官方下载安装地址|今热点
- 工程预付款是怎么规定的?工程预付款为什么要扣回?
- 种一颗牙便宜多少钱?海南打出种植牙降价“组合拳”
- 劳动合同法第38条是什么内容?公司不辞退故意调岗怎么赔偿?
- 无证驾驶怎么处罚?无证驾驶会被马上拘留吗?
- 当前时讯:生存冒险游戏《血清》新预告 拥有4人合作模式
- 天天观热点:岭南街道构建“一网二联三队伍”服务模式,为社区长者健康保驾护航
- 通信业全力保障高考|莘莘学子逐梦未来 通信业全力护航
- 焦点观察:华为品质宽带智能运维系统荣获CAICT光接入网L3.5等级认证
- 青海省启动“企业商业秘密保护能力提升服务月”活动-天天速看
- 黑龙江省北安市市场监管局着力打造“帮您办”服务品牌|动态焦点
- 非遗 | 高校留学生走进安徽文旅扶点-环球通讯
- 今日快看!FPS游戏《无畏契约》国服今日终测 删档充值返利
- 环球最新:黑河联通多措并举提升廉洁文化教育质效
- 每日视点!语文名师点评AI高考作文:百度搜索AI伙伴优于New Bing、ChatGPT
- 国家金融监督管理总局李云泽:正式启动上海再保险“国际板”-环球快看点
- 全球报道:重庆油菜喜获丰收 总产量实现连续16年增长
- 冒险游戏《血清》发布实机视频 支持简体中文 四人联机
- 全力保障高考通信畅通,重庆电信在行动!_环球速读
- 《无人深空》发布季节性更新“奇点”预告视频 现已正式上线-环球微速讯
- 世界殿堂级名团重返中国舞台 玛莎·葛兰姆现代舞团尽展风采 观速讯
- 上海移动获得DC-Tech数据中心智能建造最高等级认证 当前快讯
- 戴尔电脑开机后蓝屏重启应该怎么应对
- 电视剧《照亮你》在都市类型中铺展新的叙事面向 世界要闻
- 黑白琴键抒写长三角风情 全球新要闻
- 上海世纪出版、米哈游、东方明珠新媒体上榜
- 电脑提示vcomp140.dll文件丢失的解决方法|环球新要闻
- 世界今热点:切实保护金融消费者合法权益
- 全球快报:电脑蓝屏nv1ddmkm.sys怎么办
- “拆楼”式装修必须叫停
- 世界今日讯!李云泽:下好风险前瞻防控先手棋,以更加主动态度应对风险隐患
- 湖北馆展品超5000件:五大“重器”显实力 五类“非遗”溢楚风_今日看点
- 国家金融监督管理总局李云泽:监管体制改革是金融改革的重要一环 天天快资讯
- 公安部交管局公布近期三轮车肇事肇祸典型交通事故案例
- 网传重组人生长激素进浙江集采 长春高新连夜召开电话会回应
- 当前通讯!传记文学《灵魂的旋律:我的父亲刘炽》:再现作曲家刘炽艺术人生
- 全球微头条丨欢乐家的椰子“野心”:去年椰子汁饮料营收超8亿,今年加码投资
- 腾势D9车型5月销量11005辆,环比增长约9.6%
- 两部门:举办全国和美乡村篮球大赛(村BA)
- 最新资讯:Win10 watchdog.sys蓝屏该采取什么解决方法
- 世界视讯!《神仙道3》神阙风物志第五章详细通关攻略
- 全球净零技术制造竞争全面展开 时讯
- 海口江东新区盛泰仕家安居房项目预计10月底全面封顶
- 刀具等特殊商品退货难邮寄,如何解?
- 如何解决提示cnbbr332.dll丢失报错问题
- 【小康头条】高考第二天,这些话想对你说......_世界微速讯
- 全球新消息丨国家医保局:1-4月基本医疗保险基金总收入11403.13亿元,同比增长8.1%
- 携程集团发布2023Q1财报:净营收92亿元 同比增长124%
- 茶园里开“茶话会” 专家齐献“金点子” 当前视讯
- 《崩坏星穹铁道》访问筛查拍照位置大全
- 树立安全“红线”意识 筑牢安全生产防线_天天快资讯
- 每日热文:安徽省休宁县市场监管局开展中高考考点周边药械安全专项检查
- 医院只允许有合作的民营救护车辆进入?调查结果来了
- 海口江东新区快速通道项目启动首联钢梁吊装作业-环球速看料
- 世界要闻:加拿大野火持续蔓延 美东多地被浓烟笼罩
- 评论 | 传统中国画教育的时代价值挖掘|世界最新